台湾大学材料科学与工程学系林唯芳教授学术报告

发布者:系统管理员发布时间:2012-11-01浏览次数:5342

题目:Toward High Efficiency Polymer-Nanoparticle Hybrid Solar Cell

时间:11月5日(星期一)下午3:30

地点:高分子大楼228

联系人:陈红征教授

林唯芳教授

 
�� Education
1979美�西北大�博士後Postdoctoral Fellow, Northwestern University, Evanston, IL, USA
1978美�麻州大�博士Ph.D. University of Massachusetts, Amherst, MA, USA
 
�� Occupation
台�大�材料科��工程�系特聘教授Distinguished Professor of Department of MaterialsScience and Engineering, National Taiwan University
 
�� Experience
1996迄今 台�大�教授Professor, National Taiwan University
2010美�加州大�客座�者Visiting Professor, University of California at Santa Barbara
2004瑞士理工�院客座教授Visiting Professor, Swiss Institute of Technology (2004)
1980-1996美�西屋科技中心院士Fellow Scientist, Westinghouse R&D Center
1990日本三菱��材料研究中心客座�者Visiting Scientist, Mitsubishi Materials andElectronic Laboratory, Mitsubishi Electric Company
 
�� Expertise
高分子、奈米材料、有�太�能�池及�子陶瓷材料。
Polymers, nanomaterials, organic solar cells, electronic ceramics.
 
�� Honors
2011�科��出� NSC Outstanding Researcher Award
2010中�工程����出教授�Outstanding Professor of the Chinese Engineer Society
2009台�大�特聘教授Distinguished Professor of National Taiwan University
2008第四���部奈米��科技菁英�Outstanding Nanotech Award by Ministry ofEconomic Affairs
2008世界��化��奈米科技�家Expert in the ISO TC229-Nanotechnology
2003��企�徐有庠�念基金�奈米科技�座Chair of Nanotechnology of Far EasternY.Z. Hsu Science & Technology
 
�文及�利 Publications and Patents
148篇SCI�文及173篇��研���文 8本�
”Organic, Inorganic, Hybrid Solar Cells, Wiley 2012
148 SCI publications, 173 international conference papers, 8 books
25件美�及19件台�核准�利
25 US patents and 19 Taiwan patents.
 
Hybrid materials made from conducting polymer-nanoparticle are attractive for solar
cell because of the prospect of light weight, low cost, high throughput, high energy density
using  reel-to-reel  or  spray  deposition  on  flexible  substrate.  In  this  research,  we  are
investigating thermal  stable  polymer-metal  oxide hybrid  material for  solar  cell. We are able
to greatly improve  the efficiency of  the  hybrid  solar  cell  by fabricating  highly ordered  nano
structure  hybrids,  studying  the  morphology  and  interlayer  characteristics  of  hybrid,  and
modifying the surface of metal oxide. The device can be either in forward structure or invert
structure. The inclusion of TiO2 nanorods into conducting polymer increases  the  ordering of
polymer and its absorption spectrum was red shifted; the exciton life has been decreased to
less than half of the neat polymer. The efficiency of P3HT-TiO2 solar cell can be increased by
2.5 times by inserting a TiO2 nanorod layer between the hybrid active layer and Al electrode
due to  the  enlargement of  the interconnecting  network between the hybrid and electrode.
The  effect of  polymer  molecular  weight  on  the  nanoscale  morphology that related  to the
performance  of  P3HT-TiO2 hybrid  solar  cell  was  studied  by  scanning  near  field  optical microscopy  (SNOM),  atomic  force  microscopy  (AFM)  and  confocal  Raman  microscopy.  The results are correlated well with the carrier  transport  behavior of different molecular weight polymer investigated  by  the time-of-flight technique. The solar  cell fabricated from surface modified TiO2 nanoparticles with  bandgap  tuned linker  and  P3HT  hybrid  can  have  an order increase in efficiency.  The efficiency  of  the device  is  further  improved  by  using  newly developed  self  assembled  highly  ordered  nano  structure  copolymers  and  low bandgap conducting copolymers.